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Bufo eichwaldi (Amphibia: Anura) is a toad species endemic to the Hyrcanian forests of northern Iran and southeastern Azerbai-
jan, increasingly threatened by anthropogenic pressures, underscoring the urgent need for conservation measures. We assessed the
genetic diversity, population structure, and potential distribution of B. eichwaldi using molecular analyses and Species Distribution
Modeling in order to informmanagement plans for the species. We analyzed two mitochondrial gene fragments (16S rRNA and D-
loop) and one nuclear gene (Recombination activating gene 1), totaling 1865 bp, in 23 individuals from four populations. Our
genetic analyses revealed high haplotype diversity (0.984) and significant genetic differentiation (FST) among populations, with the
Azerbaijan population showing a genetic distance of 1.85%–2.04% from Iranian populations in the D-loop gene fragment. Genetic
results support the hypothesis that B. eichwaldi recently expanded into the Hyrcanian forests after the last glacial maximum
(LGM). Species distribution models calibrated using maximum entropy (MaxEnt) under average current climatic conditions
(1970–2000) were projected to the Mid-Holocene (6 Kya) and LGM (21 Kya), as well as on 256 time slices of 10 ky BP to assess
historic habitat stability. Our models showed good predictive accuracy, with the most influential environmental variable being
precipitation of the wettest month (50.1%), followed by temperature annual range (39.7%). Suitable habitats for B. eichwaldi have
become increasingly available in the Hyrcanian region after the LGM, in agreement with genetic evidence of a recent range
expansion into these forests. This study highlights the value of integrating genetic and ecological data to inform conservation
strategies for B. eichwaldi.
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1. Introduction

Eichwald’s Toad Bufo eichwaldi [1] is an endemic toad species
inhabiting the Hyrcanian forests, whose distribution is
restricted to southeastern Azerbaijan and northern Iran, in
the lowland and mountain forests of the Talysh, Alborz
[1–5]. Life history traits, abundance, and behavior of this spe-
cies are little known and require more research. A previous
study used species distribution models (SDMs) [6] to assess
habitat suitability for B. eichwaldi, highlighting the species’
vulnerability and the importance of understanding its ecologi-
cal requirements [7]. Another study predicted the distribution
and assessed the conservation status of B. eichwaldi in Azerbai-
jan, providing information on the species’ habitat preferences
and conservation needs [8]. Regarding genetic data, the first
karyological study of B. eichwaldi was conducted in Mazan-
daran Province, Iran, and produced baseline data that can be
useful for future population and conservation genetics studies
in the species [9]. Finally, another study used SDMs to investi-
gate the response of Eichwald’s Toad to global warming, sug-
gesting that its distribution range in the southern Caspian Sea
has experienced a contraction due to climate change and
human interference [10].

Recent research has revealed the important role of environ-
mental conditions in shaping patterns of genetic structure [11,
12]. In this context, SDMs coupled with genetic data are effec-
tive tools for understanding evolutionary processes and resolv-
ing issues in the field of biodiversity conservation [13].
Moreover, the combination of genetic diversity assessments
and SDMs offers a robust framework for addressing conserva-
tion challenges derived from ecological and climatic changes
[14]. By understanding both the ecological requirements of
species and their genetic structure, conservationists can develop
more effective strategies to protect biodiversity in an era of
rapid environmental change. This integrated approach not
only aids in preserving individual species but also supports
broader ecological resilience.

While specific studies on the molecular phylogenetics of
B. eichwaldi are sparse, research on other species in this genus
has utilized genetic markers to explore evolutionary relation-
ships among species in the region. These studies have relied on
sequencing a few mitochondrial and nuclear genes, which can
provide insights on the genetic diversity and phylogeography of
related toad species, potentially offering indirect information
relevant to B. eichwaldi [1, 8, 15]. The genetic data obtained
from karyotype and molecular analyses can be instrumental in
informing conservation strategies for B. eichwaldi. Under-
standing genetic diversity is crucial for assessing the resilience
of populations to environmental changes and for developing
effective management plans to protect this species in its natural
habitat [4, 9, 16]. These genetic and molecular studies are
essential for enhancing our understanding of B. eichwaldi’s
biology and informing conservation efforts aimed at preserving
this species in the biodiversity-rich Caspian region. Genetic
analyses help prioritize which populations are most critical
for conservation efforts based on their genetic diversity and
adaptive potential. Populations with high diversity may be pri-
oritized for protection or restoration efforts, while those with

low diversity may need interventions like gene flow augmenta-
tion [17]. Also, phylogenetic analyses and haplotype networks
enable the identification of distinct management units within a
species. Understanding and delineating these units helps in
designing targeted conservation strategies that consider the
unique genetic makeup of each population, thereby enhancing
the effectiveness of conservation actions [18, 19].

The diverse habitats along the Caspian coast, including the
ancientHyrcanian forests, wetlands, and river systems, contrib-
ute to the region’s biological richness [20]. However, increasing
anthropogenic pressures such as pollution, habitat destruction,
and overfishing threaten this unique biodiversity spot,
highlighting the urgent need for protective measures to safe-
guard the species and ecosystems present in this vital area [20].
These studies collectively underscore the need for further
research on B. eichwaldi’s natural history, particularly in terms
of its life history traits, ecological requirements, and genetic
diversity, which are crucial for effective conservation planning.

Our study integrates SDMs and genetic information
obtained from three gene fragments (two mitochondrial genes:
16S rRNA and D-loop, and a nuclear gene: recombination
activating gene 1 [RAG1]), to (1) assess the genetic diversity
of B. eichwaldi, (2) model its distribution, and (3) inform con-
servation strategies for this species in the biodiversity hotspot of
the southern Caspian Sea, where it faces threats from climate
change and habitat degradation. In general, the studies con-
ducted on this species are largely fundamental, and an applied
(conservation) perspective has been neglected. In this study, we
investigated the population dynamics and relationships of four
populations of B. eichwaldi across its range, and modeled
changes in suitable areas for the presence of the species to
determine whether conservation actions are required to sup-
port their long-term viability. Our results represent a corner-
stone for in situ conservation initiatives targeting the species
and its habitats, but also to raise public awareness about current
threats to the endemic biodiversity in the region.

2. Materials and Methods

2.1. Fieldwork and Molecular Analyses. Between January 2022
and February 2024, we collected tissue samples from four
populations of B. eichwaldi: three located in Iran: Gharn
Abad, Ghaem Shahr, Lahijan, and one in Azerbaijan (Lerik)
(Figure 1 and Table S1). These populations are separated by
geographical distances of about 150 km, and spread over most
of the range of the species (Figure 1). The four localities host
large toad populations, and many adults can be observed dur-
ing the breeding season (February and March), often road-
killed by passing vehicles. We obtained tissue samples by clip-
ping a toe from each sampled individual, a method that is
minimally invasive and allows for effective genetic analysis
without significantly harming the animals [21]. Following the
sampling procedure, all individuals were released back into
their original habitats. The collected samples were preserved
in 96% ethanol and stored at −20 °C until further analysis.

A total of 23 samples were collected from the four studied
populations (Gharn Abad: six samples, Ghaem Shahr: seven
samples, Lahijan: six samples, and Azerbaijan Lerik: four
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samples). Genomic DNA was extracted from these samples
using the salt extraction method, as described by Aljanabi
and Martinez [22], which is effective for amphibian tissues.
To amplify mitochondrial genes 16S rRNA and D-loop, as
well as the nuclear gene RAG1, specific primers were used
(Table 1). The D-loop gene fragment was selected because of
its higher polymorphism, and the other more conserved gene
fragments were selected to provide robust resolution of deeper
nodes in the phylogenetic tree.

Polymerase chain reactions (PCRs) were run in a total
volume of 25 µL (including master mix for 10 µL [composi-
tion of 0.2 units/μL Ampliqon Taq DNA polymerase, buffer
and 0.4mM of each dNTP)], water for 10 µL, forward and
reverse primers for 2 µL and DNA sample for 3 µL), and PCR
products were subsequently sent for external sequencing
using the Sanger method to Pishgam Company (Tehran,
Iran). PCR conditions for each DNA fragment are presented
in Table 1.

Iran

Caspian sea

N

0 125 250 500 Km

Lahijan

Sampling locations

Ghaemshahr

Azerbaijan Lerik

Gharn Abad

Azerbaijan

FIGURE 1: Sampling locations for B. eichwaldi populations and the global distribution range of this vulnerable species.

TABLE 1: Primer sequences and polymerase chain reaction (PCR) conditions for each gene fragment used in this study.

Gene
fragment

Primer name Primer sequences PCR conditions References

16S rRNA

16SL 5′-CGCCTGTTTATCAAAAACAT-3′ Denaturation: 94 °C for 4min
[Denaturation: 94 °C for 40 s
Annealing: 49 °C for 45 s

Elongation: 72 °C for 50 s] 35 cycles
Final extension: 72°C for 8min

Holding: 10 °C for 3min

[23]

16SH 5′-CCGGTCTGAACTCAGATCACG-3′ [23]

D-loop

Bu_15971F 5′-GAGCCTTCCCTTGGTTTAAGAGTA-3′ Denaturation: 94 °C for 4min
[Denaturation: 94 °C for 45 s
Annealing: 55 °C for 45 s

Elongation: 72 °C for 45 s] 35 cycles
Final extension: 72 °C for 10min

Holding: 10 °C for 3min

[24]

Bu_16582R 5′-CCAGGTTAAGGTCTTTAAGGTACCAG-3′ [24]

RAG1

Mart FL1 5′-AGCTGGAGYCARTAYCAYAARATG-3′ Denaturation: 94 °C for 4min
[Denaturation: 94 °C for 45 s
Annealing: 56 °C for 45 s

Elongation: 72 °C for 50 s] 35 cycles
Final extension: 72°C for 10min

Holding: 10 °C for 3min

[25]

AmpRI 5′-AACTACGCTGCATTKCCAATRTCACA-3′ [25]

Journal of Zoological Systematics and Evolutionary Research 3

 jzs, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/jzs/3100655 by D

ennis R
ödder - L

eibniz-Institut zur A
nalyse des B

iodiversitaetsw
andels , W

iley O
nline L

ibrary on [16/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2.2. Molecular Phylogenetic Reconstruction. Sequences were
visually checked using BioEdit v. 7.0 [26] and aligned with
ClustalW, also implemented in BioEdit v. 7.0. To establish a
phylogenetic framework for our analyses, we selected Bufo
gargarizans as an external outgroup to root the tree [25]. We
also used sequences fromGenBank of other species which, with
B. eichwaldi, form the Bufo bufo species group, including
B. bufo and B. verrucosissimus (Table S1) [24]. We used
sequences from species that are geographically and phylogenet-
ically closer to B. eichwaldi, but using the sequences of other
species, such as Bufo spinosus, is not acceptable, because it is
distant from our focus of study. Uncorrected genetic distances
among populations of B. eichwaldi were calculated for the D-
loop and 16S gene fragments using MEGA 11 [27]. We
assessed evolutionary models and selected the best-fitting
model using Model Test 3.7 [28], based on the akaike informa-
tion criterion. The chosenmodels for each gene were as follows:
16S: TrN+I, D-loop: GTR+I+G, and RAG1: K81uf+I. For
downstream molecular phylogenetic analyses, we used maxi-
mum likelihood (ML) and Bayesian Inference (BI) methods on
concatenated Phylip and Nexus files totaling 1865 bp. The ML
analysis was conducted using RAxML 7.4.2 [29], implemented
within RAxMLGUI 1.3 [30], applying the GTR+I+G model
with default settings. For BI analyses, we employed MrBayes
3.2.1 [31], running 100million generations sampling every
1000 generations and applying a 25% burn-in threshold to
discard the initial trees.

2.3. Population Genetic Analyses and Haplotype Network. To
assess population genetic structure, we focused on the most
variable gene, the D-loop gene fragment (556 bp). We per-
formed population genetic analyses using DnaSP v. 5.0 [32]
to calculate haplotype diversity indices.

Two levels of genetic variation (within populations and
among populations) were determined by Analysis ofMolecular
Variance (AMOVA) while assuming Hardy–Weinberg equi-
librium in the populations and performing 999 permutations to
assess statistical significance. Pairwise population differentia-
tion (PhiPT) was calculated with software GeneAlEx 6.5 [33].
These indices are critical for uncovering population structure in
B. eichwaldi in the Hyrcanian forest [26].

A haplotype network was constructed based on theMedian
Joining algorithm using PopArt 1.7 [34], allowing for a visual
representation of genetic relationships among haplotypes in the
populations studied.

2.4. Modeling of Potential Distribution

2.4.1. Species Records, Climate Data, and Variable Selection.
We compiled a dataset containing 126 unique georeferenced
records of B. eichwaldi obtained during our fieldwork, but also
added further occurrence points deposited in the Global Bio-
diversity Information Facility [35] and others reported in the
literature [8, 10, 16]. All records were visually inspected in
ArcGIS to identify potential outliers or georeferencing errors.
The dataset was spatially rarified to a minimum distance of
12 km, equaling approximately a minimum distance of three
grid cells of the environmental variables (see below) using the
R package spThin [36], resulting in 31 records used for model

calibration, covering the entire geographic range of the
species.

We downloaded layers for current climatic conditions
(1970–2000) from WorldClim.org v. 2.0 with a spatial resolution
of 2.5 arcmin (4km) [37]. These layers result from spatial inter-
polations based on weather station data across a target temporal
range of 1970–2000 and remote sensing information. To avoid
redundancy in the information provided in these climatic layers,
we conducted a correlation analysis to test for multicollinearity
using Spearman rank correlations following the procedure
described in Amiri et al. [38]. Among pairs of variables with
correlation coefficients of ρ2<0.75, we kept only one variable.
The final data set comprised temperature annual range (BIO7),
mean temperature ofwettest quarter (BIO8),mean temperature of
driest quarter (BIO9), and precipitation ofwettestmonth (BIO13).

To quantify historical fluctuations in the potential ranges of
the study species we followed two different approaches: (1) we
used spatially downscaled global circulation model outputs as
described in [39] for the time slices in the Mid-Holocene
(6 ky BP) and at the last glacial maximum (LGM; 21 ky BP)
as unweighted ensembles based on palaeoclimate simulations
following the r1i1p1 ensemble from the PMIP3 project
(Paleoclimate Modeling Intercomparison Project Phase III,
https://pmip3.lsce.ipsl.fr/; [40]). Mid-Holocene climate layers
were estimated based on 11 scenarios (MRICGCM3, MPI-
ESM-P, MIROC-ESM, IPSL-CM5A-LR, GISS-E2-R, FGOALS-
g2, CSIRO-Mk3 l-1-2, CSIRO-Mk3-0, CNRM-CM5, CCSM4,
and BCC-CSM1), while seven scenarios were available for the
LGM (MRI-CGCM3, MPI-ESM-P, MIROC-ESM, IPSL-
CM5A-LR, FGOALS-g2, CNRM-CM5, and CCSM4). As an
alternative climate data set, we used Oscillayers [41], represent-
ing 256-time slices in steps of 10 ky within the Pleistocene.

2.4.2. Species Distribution Modeling. To develop the SDMs, we
used the presence-pseudoabsence algorithm maximum
entropy (Maxent) vers. 3.4.4 [6, 42, 43]. As environmental
background for model calibration, we selected an area defined
by a minimum convex polygon enclosing all species records,
which was spatially buffered by 10 km. Maxent may benefit
from extensive model optimization [44]. Therefore, we fol-
lowed the procedure described by P. Ginal, W. C. Tan, and
D. Rödder [45] to identify the most suitable settings of the
regularization parameter (from 0.5 to 2.5 in 0.1 steps, 5 and
10) and combination of feature classes (L, LQ, LH, QH, LQH;
L=Linear, Q=Quadratic, andH=Hinge) using a customized
script and the relevant functions of the ENMeval package [46]
for R. This package acts as an interface passing different com-
binations of settings to MaxEnt and summarizing the results.
For each of the 115 combinations, we computed 25 models
using a data partition strategy with 80% records used for model
training, resulting in 2875 models. The optimal settings based
on the akaike information criterion corrected for small sample
size were a regularization parameter of 2.2 and linear and qua-
dratic features. For final model training, species records were
split 100 times into 20% record sets used for model testing via
the area under the receiver operating characteristic curve
(AUC) [47] and the true skills statistic (TSS), and the remain-
ing 80% were used for model training applying a bootstrap
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procedure. AUC ranges from 0 to 1, where AUC scores of 0.5
indicate a no better than random model discrimination ability
between presences and pseudoabsences, while scores close to 1
indicate a perfect discrimination ability. TSS scores range from
−1 to +1, with scores of 0 indicating a performance no better
than random and scores close to+1 indicating perfect discrim-
ination. The average prediction across all 100 replicates was
subsequently projected into the geographic space using the
clog-log output format. The final prediction was then con-
verted to a binary presence-absence map using as threshold a
10% omission criterion. Areas characterized by climatic condi-
tions beyond the training range of the models were identified
using multivariate environmental similarity surfaces [48]. To
estimate the stability of potentially suitable habitat patches
through time, we overlaid all potential distributions as pro-
jected onto the Oscillayer dataset.

3. Results

3.1. Population Genetics and Molecular Phylogenetic Results.
The final concatenated dataset for this study comprised two
mitochondrial gene fragments, 16S (570 bp; variable sites
(V)= 44, parsimony informative (Pi)= 36), and D-loop

(556 bp; V= 160; Pi= 135), along with one nuclear gene frag-
ment, RAG1 (739 bp; V= 19; Pi= 16), totaling 1865 bp.
Among these, D-loop exhibited the highest variability, while
RAG1 showed the lowest. The high haplotype diversity in the
D-loop gene fragment (0.984) indicates that there is a very high
probability of observing two different haplotypes within popu-
lations of B. eichwaldi (Figure 2). The Azerbaijan population
showed a genetic distance of 1.7%–2.2% from Iranian popula-
tions for the D-loop gene fragment (Table 2). The AMOVA
indicated that 60% of the overall genetic variation was
attributed to differences within populations of B. eichwaldi,
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10 samples
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Ghaemshahr
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FIGURE 2: Haplotype network of B. eichwaldi constructed using the Median Joining algorithm in Popart 1.7 by D-loop gene fragment. Circles
represent unique haplotypes, with circle size proportional to haplotype frequency. Lines connecting the circles denote mutational steps
between haplotypes, illustrating the genetic relationships and structure among populations. Haplotypes present in the Azerbaijan population
are well differentiated from those occurring in Iranian populations.

TABLE 2: Uncorrected (%) pairwise genetic distances among popula-
tions of B. eichwaldi. Above diagonal: 16S and below diagonal: D-
loop.

Locality Gharn Abad Ghaem Shahr Lahijan Lerik

Gharn Abad — 0.31 0.27 0.56
Ghaem Shahr 0.95 — 0.11 0.34
Lahijan 0.74 0.97 — 0.48
Lerik 1.85 2.04 1.88 —

Journal of Zoological Systematics and Evolutionary Research 5
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which is notably greater than the 40% variation observed
between populations, as outlined in Table 3. The average
PhiPT value and gene flow (Nm) among populations were
0.396 (p<0:001) and 0.762, respectively.

The pairwise PhiPT values offered insights into genetic dif-
ferentiation among populations. The most significant differenti-
ation (0.667) was noted between the Lerik and Gharn Abad
populations, while the least differentiation (0.018) occurred
between the Gharn Abad and Lahijan populations, as summa-
rized in Table 4.

The Azerbaijan population of B. eichwaldi and the Iranian
populations show mixed branches in the molecular phyloge-
netic tree, but the genetic distance of the Azerbaijan population
is higher than the other populations in Iran. These evidences
suggest the distinct genetic structure of B. eichwaldi through its
distribution range and a monophyletic group.

3.2. Species Distribution Modeling. The SDMs achieved an
average AUC value of 0.832 and an average TSS score of 0.46,
indicating good predictive accuracy. The potential distribution of
B. eichwaldi was projected on climatic conditions representing
the LGM (21 Kya), Mid-Holocene (6 Kya), and current climatic
conditions (1970–2000) (Figure 3). The results suggest that suit-
able habitats for B. eichwaldi have become increasingly available
in the Hyrcanian region after the LGM, expanding from a still
interconnected stripe of suitable habitats within the Hyrcanian
region north and southwards. Within the north-western part of
the species’ range, the potential distribution is less stable, suggest-
ing repeated fragmentation and expansion. Projections on the
Oscillayers data set representing 256 time slices in intervals of
10 ky BP show similar patterns, with less stable environmental
suitability in the species’ north-western range (Figure 4). The
most influential environmental variable contributing to the
model was precipitation of wettest month (BIO13, 50.1%). This
indicates that the amount of precipitation during the wettest
month is a critical factor in determining the species’ potential
distribution. The second most important variable was tempera-
ture annual range (BIO7, 39.7%). This variable represents the
difference between the maximum and minimum temperatures

throughout the year and suggests that B. eichwaldi is adapted to a
specific range of annual temperature fluctuations. Other impor-
tant variables included the mean temperature of wettest quarter
(BIO8, 9.5%) and mean temperature of driest quarter (BIO9,
0.7%). These variables highlight the significance of temperature
during the wettest and driest periods of the year in shaping the
species’ potential distribution.

4. Discussion

The Eichwald’s Toad is an endemic species in the Hyrcanian
forests, and the high haplotype diversity (0.984) observed
across populations indicates significant genetic variation,
which is crucial for the species’ resilience to environmental
changes and long-term survival [21]. The high genetic differ-
entiation between the Azerbaijan and Iranian populations for
the D-loop gene fragment suggests limited dispersal abilities
and the presence of geographic barriers restricting gene flow
between populations [49]. The mixed genetic structure within
the Iranian populations may be attributed to the presence of
dispersal corridors that facilitate gene exchange [25]. These
patterns of historic range stability in Iranian populations and
less stability towards Azerbaijan are well reflected in historic
range dynamics (Figures 3, 4). The molecular phylogenetic tree
(Figure 5), constructed using both ML and BI approaches,
confirmed the monophyletic status of B. eichwaldi, consistent
with previous phylogenetic analyses [5]. The low genetic dis-
tances among Iranian populations suggest either a recent range
expansion or the presence of selective pressures acting on the
species. This may support the hypothesis that B. eichwaldi has
expanded into the Hyrcanian forests following the LGM. This
expansionmay have been facilitated by the increasing availabil-
ity of suitable habitats in the region postLGM.

The species distributionmodeling results indicate that suit-
able habitats for B. eichwaldi have expanded from smaller, but
still connected, suitable habitats within the Hyrcanian region
since the LGM (Figures 3, 4), which is consistent with popula-
tion genetic structure results. This finding aligns with previous
studies that have highlighted the impact of climatic changes on

TABLE 3: Results of analysis of molecular variance (AMOVA) of B. eichwaldi populations based on D-loop sequences.

Source of variation DF SS MS Est. var. % PhiPT

Among populations 3 31.466 10.489 1.456 40%
0.396 ∗∗Within populations 19 42.143 2.218 2.218 60%

Total 22 73.609 — 3.674 100%

Note: %, percentage of total variance contributed by each component and significance of variance (p-value); ∗∗p<0:001.
Abbreviations: DF, degrees of freedom; Est.Var., estimated variance component; MS, mean square deviations; SS, sum of squares.

TABLE 4: Pairwise PhiPT values among B. eichwaldi populations based on 999 permutations from AMOVA analysis (PhiPT values involving
the Lerik population were significantly greater than 0, p<0:0001).

Population Gharn Abad Ghaem Shahr Lahijan Lerik

Gharn Abad — — — —

Ghaem Shahr 0.174 — — —

Lahijan 0.018 0.061 — —

Lerik 0.667 0.594 0.600 —

6 Journal of Zoological Systematics and Evolutionary Research
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amphibian distributions in this region. For instance, Kidov and
Matushkina [8] modeled the distribution of B. eichwaldi in
Azerbaijan, identifying annual precipitation and environmen-
tal habitat heterogeneity as significant factors in shaping the
species’ potential range. Our models identified precipitation of
wettest month (BIO13) as the most influential variable,

emphasizing the importance of hydrological factors in deter-
mining suitable habitats for amphibians.

Our models also highlight the importance of precipitation
patterns, particularly the variable precipitation of wettest month
(BIO13), in determining habitat suitability forB. eichwaldi. These
findings are consistent with previous studies that have

Suitability
0.98

0.33
Mess

LGM

100 kmN

ðAÞ

Suitability
0.98

0.33
Mess

Mid-Holocene

100 kmN

ðBÞ

Suitability
0.98

0.33
Mess

Present

100 kmN

ðCÞ
FIGURE 3: Habitat suitability predictions for B. eichwaldi in the Hyrcanian forest across three time frames. (A) last glacial maximum (LGM, 21
Kya), (B) Mid-Holocene (6 Kya), and (C) current climatic conditions (1970–2000). MESS refers to multidimensional environmental
similarity surfaces; grey areas are identified as prone to extrapolation beyond the training range of the models.
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documented postglacial range expansions in other species inha-
biting the Hyrcanian forests [38]. The IUCN [50] Red List cur-
rently categorizes B. eichwaldi as Vulnerable, with a declining
population trend and a fragmented distribution within a range
of approximately 17,000 km2. The genetic and ecological data

generated in this study underscore the need for targeted conser-
vation efforts to protect this species and its habitat by promoting
public awareness. The Hyrcanian forests serve as critical refugia
forB. eichwaldi and other endemic species, and their preservation
is essential for maintaining biodiversity in the region [9]. Kidov

Stability through time
256

0

100 kmN

FIGURE 4: Stability through time based on 256 single projections on 10 ky time slices within the Pliocene. Warmer colors indicate higher
suitability through longer time periods.
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andMatushkina [8] identified threats toB. eichwaldi populations,
including habitat destruction and contamination of breeding
ponds. The current study reinforces the need for conservation
strategies that focus on protecting and restoring these critical
habitats and as well as regions with high densities of toads (like
our sampling localities). These localities are not situated within
protected areas, but future-projected SDMs [10] indicate that
habitat suitability for the species may contract in these high-
density regions. The identification of key environmental variables
influencing habitat suitability can guide conservation efforts,
ensuring that areas with high potential for B. eichwaldi are prior-
itized for protection. The modeling of past and present distribu-
tions provides a baseline for future projections under changing
climatic conditions. The findings from this study suggest that
while B. eichwaldimay find new suitable habitats; careful moni-
toring and proactive conservation measures will be essential to
mitigate the impacts of climate change and habitat degradation.

5. Conclusion

This study highlights the importance of integrating genetic and
ecological data to inform conservation strategies for B. eichwaldi.
The findings emphasize the pressing need for habitat protection
in the Hyrcanian forests to ensure the long-term survival of this
vulnerable species. Our results and other available evidence show
that while favorable habitat conditions for the presence of the
species improved after the LGM, the species now faces substan-
tial pressures from habitat fragmentation, water pollution, and
mortality due to road traffic during the breeding season (anthro-
pogenic pressure). Ongoing monitoring and research are crucial
to further characterize the impacts of climate change and habitat
degradation onB. eichwaldi populations, and to develop effective
management plans to safeguard its populations at target (sam-
pling) locations. By building on the insights gained from this
study and previous research, conservation strategies will be bet-
ter informed to ensure the survival of B. eichwaldi in the Hyrca-
nian forests, which serve as a critical refuge for this species and
other endemic organisms.
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