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Abstract 
Context  Population expansion into new areas is 
a common phenomenon resulting from changes in 
ecological conditions or human-assisted introduction. 
In the latter case, populations spread into areas 
where they did not evolve causing various ecological 
and socio-economic impacts. Spatial sorting (i.e. 
the enhanced dispersal capacity over time at the 
periphery of an expanding range) and landscape 
are two major factors affecting spread dynamics in 
expanding populations.
Objectives  While both factors have been frequently 
studied independently, their relative influence to 

modulate the spread rate of expanding populations 
has been significantly unexplored. We addressed this 
issue through a modeling approach.
Methods  We simulated the spread of an invasive 
amphibian, Xenopus laevis, in various landscape 
windows within and around its colonized ranges in 
western France. Using UNICOR, we ran colonization 
simulations on 30  km × 30  km windows of an 
experimentally parameterized resistance layer at three 
intensities of spatial sorting.
Results  Habitat (pond) density and spatial sorting 
positively affected the rate of population expansion 
in the windows and interacted: higher spatial 
sorting and pond density increased the invaded area, 
number of colonized ponds, and maximal traveled 
distance per time unit. In contrast, none of the four 
landscape configuration metrics improved the 
models, suggesting that they have limited influence 
on population expansion. Thus, the effect of spatial 
sorting on population spread was enhanced by pond 
density but not by landscape configuration.
Conclusions  Our results highlight the importance 
to jointly consider habitat density and spatial sorting 
in predictive modeling of the spread process in 
expanding populations, particularly for biological 
invaders.
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Introduction

The expansion of populations may happen for many 
reasons. It occurs when an ecological barrier like a 
mountain range or a large body of water is overcome 
(Paulay 1994), when the distribution of competitors 
or enemies shifts, as observed in moving hybrid 
zones (Engler et  al. 2013), or when ecosystem 
changes offer new suitable conditions for the species 
(Lake 2003). These natural processes are currently 
exacerbated by global changes, for instance when 
shifts of climatic zones lead to the colonization of 
new land or marine areas previously unsuitable for 
species (Parmesan et al. 1999). Additionally, human-
assisted translocations of organisms have led to the 
surge of introduction of alien invasive populations 
across the globe. The spread of these populations 
generates increasing costs for biodiversity and human 
societies worldwide (Gallardo et  al. 2016; Seebens 
et  al. 2018; Diagne et  al. 2021). For these reasons, 
there is a broad interest in investigating the processes 
underlying population expansion in various contexts 
and at the demographic, genetic, or ecological 
level. The identification of factors that promote or 
hamper the movement at the range front is pivotal 
to the understanding of range dynamics. From a 
management perspective, it could help to anticipate 
and mitigate the spread of alien invasive populations 
(Phillips et al. 2016).

Spatial sorting and landscape structure can largely 
influence the dynamics of spread (Phillips et  al. 
2006; Pachepsky and Levine 2011; Williams et  al. 
2016b; Ochocki and Miller 2017). Other factors may 
contribute to expansion dynamics such as the genetic 
makeup of the expanding population (endogenous 
factor) (Hargreaves and Eckert 2019) or the presence 
of other species (exogenous factor) (Svenning et  al. 
2014). However, we will not address them in this 
study. Spatial sorting is an endogenous factor that 
is defined as the increase in dispersal capacity over 
time occurring at the front of an expanding range. 
According to the “Olympic village” hypothesis, 
the best dispersers meet and mate at the range front 
so that their progeny holds above average dispersal 
capacity (Phillips et al. 2008). The process is iterative 
and each new generation of individuals dispersing 
beyond the current front will produce even better 
dispersers so that the expansion rate increases over 
time (Burton et al. 2010). Spatial sorting is generally 

viewed as a pull wave driven by increasing dispersal 
capacity at the range periphery, as opposed to a push 
wave generated by an outward demographic growth 
(Chuang and Peterson 2016). It has been observed 
in groups as diverse as plants, insects or vertebrates 
(Hughes et  al. 2003; Huang et  al. 2015) and at a 
continental scale (Urban et  al. 2008) as well as at a 
local scale (Courant et al. 2019).

Landscape structure is an exogenous factor to 
organisms and populations. For many continental 
species, landscape determines the way individuals 
move across the land. The various components of 
the landscape, as determined by land use, impose 
different costs on movement. Some landscape 
features physically impede displacement or are 
avoided because of higher risks of meeting enemies, 
predators in particular, while traveling across other 
features may be carried out at low physiological 
expenses or with limited chance of meeting 
hazardous situations (Bonte et al. 2012; Nowakowski 
et  al. 2015; Vasudev et  al. 2015). Resistance cost 
maps are spatially-explicit quantifications of these 
costs across entire areas (Zeller et al. 2012). They are 
used as raw information to model connectivity, i.e. 
the most likely paths individuals will travel across 
the landscape (Rayfield et  al. 2011; Cushman et  al. 
2013). Eventually, the capacity of individuals to 
colonize new areas and the population to spread will 
largely depend on the ability to reach new suitable 
areas through the landscape and complete their life 
cycle (Gustafson and Gardner 1996; Berggren et  al. 
2001; With 2002).

Highly resistant landscape features, by strongly 
reducing the probability of migrants to reach a 
suitable habitat, may promote the evolution of 
reduced dispersal (Schtickzelle et  al. 2006; Cheptou 
et  al. 2008). However, these constraints may be 
overcome if the movement capacity of individuals 
increases over time, which may occur at the edge 
of expanding populations due to spatial sorting. 
We can thus predict that spread dynamics result 
from the intensity of spatial sorting (the rate of 
increase of dispersal per generation) and landscape 
structure. An important piece of information to the 
understanding of expansion dynamics is to assess the 
relative contribution of spatial sorting and landscape 
to population spread. Turning this question into 
an insightful modeling exercise is not an easy task 
because of the diversity of landscape structures and 
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dispersal capacities of biological species. A less 
ambitious but still informative approach would be 
to simulate population expansion for a species with 
known dispersal capacity across a well-defined area. 
This may allow estimating the relative contribution of 
spatial sorting and landscape structure, although for 
a limited set of conditions, and provide information 
to forecast the expansion of the focal population. 
Previous studies have investigated the effect of 
habitat fragmentation on the evolution of dispersal 
(Schtickzelle et al. 2006; Cheptou et al. 2008; North 
et al. 2011; Williams et al. 2016a) or range expansion 
in non-evolving populations (Hodgson et  al. 2012; 
Bocedi et  al. 2014; Barros et  al. 2016), but less 
attention has been paid to the interplay between 
landscape and dispersal evolution in expanding 
populations (but see Urquhart and Williams 2021). 
These studies commonly used artificial binary 
landscapes (habitat vs. matrix) and did not consider 
the various resistance costs incurred by organisms 
moving across more realistic landscapes. Hypotheses 
may not be easily stated unless considering such 
cases. In binary landscapes, the distances between 
habitat patches and the fixed resistance cost of the 
inter-patch matrix mostly matter, whereas in more 
natural situations the average size and shape of each 
landscape feature is also important. Further, if for a 
constant level of fragmentation across an area, spatial 
sorting is expected to increase connectivity at each 
increment of the dispersal capacity, predictions are 
less straightforward when landscape configuration is 
not constant. This happens when the average size and 
spatial distribution of each feature, each imposing its 
own resistance cost on movement, change across the 
study area, for instance because of different soils or 
altitudinal variation.

Herein, we carried out such a study by simulating 
the expansion of the African clawed frog Xenopus 
laevis in one of its main invasive ranges in Europe 
(Measey et  al. 2012). The species is a major model 
in biological sciences but, unfortunately, it is 
also recognized as one the three major invasive 
amphibians in the world (Measey et al. 2016). It has 
been introduced in several continents because of its 
use in biomedical research and as a pet (van Sittert 
and John Measey 2016). Both its global current 
distribution (including in captivity) and climate 
changes make it likely that novel populations will be 
introduced and become invasive in many more parts 

of the world (Measey et al. 2012). We used published 
quantification of dispersal capacities (De Villiers and 
Measey 2017), experimentally determined resistance 
costs (Vimercati et  al. 2021) for the population 
investigated here, and resistance cost layers extending 
beyond the current invasive range (Vimercati et  al. 
2024). We then simulated population expansion from 
different starting windows, i.e. square cells of the 
same area sampled from the resistance cost layer, and 
let the populations spread across the landscape.

We estimated the dynamics of spread and tested the 
relative influence of various levels of spatial sorting 
intensity (SSI), habitat density (i.e. pond density), 
and landscape structure in the invasive ranges of X. 
laevis and their close surroundings in western France 
and Bordeaux area. In a metapopulation, isolation, 
habitat patch size and landscape configuration affect 
the fraction of occupied patches (Hanski 1994; 
Gustafson and Gardner 1996). Pond density is 
correlated to the mean distance to the nearest habitat 
and is a proxy of isolation. Landscapes with higher 
ponds densities are expected to be colonized faster. 
In our system, habitat patches are ponds which are 
very small (tens to hundreds of square meters for 
most of them) relative to size of other landscape 
components. Therefore, we did not consider pond 
size. We quantified landscape structure through 
aggregation measures and area and edge metrics. 
Larger aggregation reflects simpler landscape with 
larger patches in such an agricultural context. Higher 
aggregation level of non-habitat is thus expected 
to increase inter-habitat patches distance, reduce 
connectivity and slow down expansion. Landscape 
complexity is also reflected by the length of edges 
between patch types and the variation in patch size. 
Agricultural intensification favor larger parcels and 
more homogeneous landscapes with less edges and 
increase distances between ponds. The influence of 
edges on richness, species interaction or dispersal 
is largely described but remains difficult to predict 
as opposite effects have been reported (Ries and 
Sisk 2004; Porensky and Young 2013). However, 
within the range of landscapes in the study areas, 
less edges and higher variation between patch sizes 
are generally expected to decrease expansion rate, 
although the actual effect may depend on the relative 
resistance costs of the various patch types to cross 
and arrangement of patches (Gustafson and Gardner 
1996). We also predicted an interaction between 
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spatial sorting and landscape structure as the slope 
of the relationship between proxies of expansion and 
landscape configuration may not depend on SSI in an 
additive way.

Methods

Model

The African clawed frog Xenopus laevis is a frog 
from southern Africa that has been introduced 
in western France in the early 80’s to a single 
site in Deux-Sèvres. The alien population has 
been expanding since then (Fouquet and Measey 
2006), impacting amphibian (Courant et al. 2018a) 
and invertebrate communities (Courant et  al. 
2018b) and is now covering more than 4000 km2 
(Vimercati et  al. 2020). A new population, about 
230 km away from the former, has been discovered 
in 2015 in a single pond near Bordeaux (Fig.  1). 
Both areas are subjected to an oceanic climate (Joly 
et  al. 2010) and a land use that mostly consists of 
cropland, grassland, forest, vineyards and urban 
zones (Meersmans et al. 2012). Both areas also host 

a high density of water bodies due to the historical 
creation of artificial ponds for cattle breeding in 
Deux-Sèvres and also of larger ponds resulting from 
material extraction around Bordeaux.

Resistance cost layer

To compute resistance cost layers for each area, 
we used resistance costs that were experimentally 
measured for the invasive population of X. laevis in 
Western France (Vimercati et al. 2021). Accordingly, 
we set resistance to 1.5 for water, 5 for soil and 
asphalt, 7.5 for forest, 11 for grass, 999 for buildings. 
Using a classification of SPOT 6/7 satellite images, 
we mapped these land use types across two areas 
(dimensions) that expanded beyond each of the two 
current ranges. The two areas being essentially flat 
we did not use topography in the computation of the 
layer. We then built the resistance map by assigning 
resistance costs of the corresponding land use type 
to each pixel (Fig. 1). The whole modelling approach 
has been described elsewhere (Vimercati et  al. 
2024). We thus had access to a resistance cost layer 
covering 50,120 km2 (24,940 km2 for Western France 

Fig. 1   Overview of the 
resistance maps used for 
this study. Map of France 
with a projection of the 
two resistance maps that 
cover the two study areas: 
Western France (A), 
Bordeaux area (B)
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and 25,180 km2 for Bordeaux area) with a spatial 
resolution of 5 m (Fig. 1). However, as noted in this 
study, there is an uncertainty about the resistance cost 
of lotic habitats, i.e. rivers and streams, which was set 
to 1.5 then. To account for this uncertainty, we built 
two additional resistance layers, with respectively a 
higher (3.0) and lower (0.5) resistance cost for rivers, 
and keeping the same values for all other categories. 
This assumes that moving across a grass pixel (the 
most more resistant substrate) is respectively 3.7, 7.3 
(original value), and 22.0 times costlier for frogs than 
moving across a river pixel.

Simulation procedure

To shorten computation time, resistance layers were 
split into smaller and non-overlapping 30 km × 30 km 
windows. Incomplete windows located at the edge 
of the layer were discarded. In total, we retained 25 
windows, 14 of which were located in the Western 
France range and 11 in the Bordeaux range. Each 
window had a unique landscape pattern and is 
considered as an independent replicate. Computation 
for resistance layers were carried out using the R- 
package raster. To simulate window colonization by 
the frog, we used the software UNICOR (Landguth 
et  al. 2012), which has already been effectively 
used for connectivity studies on amphibians 
(Compton et  al. 2007). The software is based on 
“Dijkstra’s shortest path algorithm” (Dijkstra 1959) 
in combination with a resistant (dispersal) kernel 
approach so that is integrates the dispersal capacity 
of the focal species. UNICOR is used as a tool to 
identify corridors and model population connectivity. 
Starting points were set at each step of the simulation. 
The first starting point was the pond most proximal 
the center of the window from which the population 
was allowed to expand across the resistance layer. 
Prior to the next expansion step, 50 percent of 
potentially accessible uninvaded ponds were extracted 
at random and defined as new starting points using 
an automated R-script, wherein the probability of 
colonization was dependent on the likelihood of 
accessibility as derived from the dispersal kernels 
computed with UNICOR. The process was iterated 
until the twenty first step, or halted earlier if the 
population had reached the window border. We used 
QGIS 3.28.0 (QGIS Development Team 2023) to 
identify the first starting points by hand and the R 

packages dplyr and raster for the R script. We set the 
maximal cumulative distance per step to 11,032. This 
is the maximal resistance cost of all cells that can be 
crossed in one step. This value was estimated from a 
capture-recapture experiment in the Western France 
area (Courant 2017). The Gaussian function was 
used as the Kernel density estimation of the dispersal 
function to buffer the length of the outcoming paths. 
Three runs with different intensities of spatial sorting, 
which categorical variable is hereafter referred to as 
SSI, and the same starting point were computed. To 
simulate spatial sorting, we increased the maximal 
traveled distance by either 2.5% or 5% each step. For 
comparison, the shift in distance of the invasive range 
border of the Cane toad in Australia increased by 
be about 2.5% per year (Phillips et  al. 2008). In the 
control condition, we kept the initial traveled distance 
unchanged throughout the simulation.

Landscape descriptors

Beyond spatial sorting, range expansion is expected 
to depend on the characteristics of the landscape 
individuals move through. We considered two 
components of landscape which have been described 
elsewhere (Vimercati et al. 2024). The first is habitat 
density, quantified here as pond density (number of 
ponds per km2). Raw data were obtained from BD 
Topo® provided by the French National Geographic 
Institute from Géoportail (https: //www.​geopo​rtail. 
gouv.fr). The second is landscape configuration, i.e. 
the way in which various features are distributed 
across the landscape. The features are those described 
in Resistance cost layer section. By using the R 
package landscapemetrics (Hesselbarth et  al. 2019), 
we computed four indices: cohesion, contagion, 
edge density and the coefficient of variation of patch 
area that quantify different aspects of the landscape. 
Cohesion (lsm_c_cohesion) assesses whether 
patches of the same class are aggregated or isolated. 
Contagion (lsm_l_contag) gives the probability 
that two pixels drawn at random in a cell belong to 
the same class of land use and is another form of 
aggregation. Edge density (lsm_l_ed) represents 
the total length of edges over a cell area. Area.cv 
(lsm_l_area_cv) provides the coefficient of variation 
of all patches areas in the cell. We checked the 
level of correlation between these five predictors in 
our sample of windows. Pearson correlations were 

http://www.geoportail
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low (-0.296 < r < 0.131) so we considered these 
descriptors of the window landscape as independent, 
which was visually confirmed by the representation 
of a Principal Component Analysis (PCA) on the 
five predictors described above using R packages 
FactomineR and factoextra (SI Figure  S1). All 
predictors were standardized prior to analysis. The 
first three principal component represented 72.47% of 
variation.

Statistical analyses and visualization

We estimated the effect of spatial sorting intensity 
(SSI), habitat density (pond density) and landscape 
configuration (cohesion, contagion, edge density, 
area cv) on colonization speed. As expansion proxy 
we computed for each window the slope of the 
relationship between time (number of steps) and the 
colonized area. We also computed two other proxies 
(maximal travelled distance and cumulative number 
of colonized ponds) in the same way. However, the 
correlations between the three proxies were very high 
within each level of SSIs (0.705 < r < 0.902) and river 
costs (0.724 < r < 0.951) (SI Figure S2). For clarity, 
we present below only the results for colonized area, 
which is the most informative about the expansion 
process.

We then computed a single linear mixed model 
with a Gaussian distribution of errors using the R 
package lme4. The proxy for colonized area was 
the response variable and SSI (3 levels), river cost 
(3 levels), pond density and the four landscape 
descriptors were fixed predictors. Additionally, we 
included two-way interactions between SSI and all 
other predictors. Window identity was considered 
as a random factor since each window was used for 
simulations at all SSIs (control, + 2.5% and + 5.0% 
dispersal) and river costs (0.5, 1.5, 3.0). We then 
carried out model averaging using the R package 
MuMIn, selecting a subset of models with ΔAICc < 4 
to the best model. Model diagnostics to the full 
model were carried out using the package DHARMA 
and exhibited no significant deviation. We also 
used R package performance to estimate model 
fit for mixed models (Nakagawa et  al. 2017). We 
computed marginal R2 (fixed effects), conditional 
R2 (fixed effects and random effects), and intra-class 
correlation ICC (random effects) for the full model. 

Graphs representing models were plotted using the 
R packages ggplot2, ggeffects and gridExtra. In 
addition to the statistical analysis, we visualized the 
colonization process in each window. Cumulative 
resistance layers of UNICOR outputs were created, 
saved and merged for each window and step, resulting 
in an image for each step and window, which 
compares the difference between each SSI. Some 
examples are provided as supplementary information 
(SI Figure S3).

Results

We effectively simulated window colonization (SI 
Figures  S3 and S4). The steps at which simulations 
stopped depended on the window and SSI when 
the window border was reached. Many simulations 
ended before reaching the last step. Thus, we needed 
to optimize the trade-off between a larger sample 
size of windows and a larger number of time steps 
during the simulation to compute the regression of 
expansion proxies against time steps. Figure 1 shows 
for the resistance layer used in Vimercati et al. (2024) 
that the relationship is not linear. Thus, we applied a 
square-root transformation to the response variables 
(expansion proxies), which appropriately linearized 
the relationships across the range of step numbers. 
We then computed the regression on simulation 
data up to the ninth step to obtain the largest sample 
size of windows (n = 21). Four windows (BDcell11, 
BDcell16, BDcell25, WFcell28; BD and WF stand 
for Bordeaux area and Western France respectively) 
were excluded from the final dataset because 
colonization halted at step one or two for at least 
one SSI, generating missing values in the dataset 
and preventing their use in our mixed model. For 
the first window (WFcell28), colonization did not 
occur regardless of SSI. For the second window 
(BDcell16) colonization progressed, but not to the 
window border, and only at the lowest SSI. For the 
two remaining windows (BDcell11, BDcell25), 
colonization was halted at the two lowest SSIs, 
although it proceeded to the window edge for the 
simulation at the highest intensity (SI Figure S4).

The predictors explained a large variation of 
the expansion proxy as ΔAICc between the best 
and the null model was substantial (296.55). 
Model fit for the full model was good (marginal 
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R2 = 0.841, conditional R2 = 0.958, Intra-class 
coefficient = 0.738). Ten models had a ΔAICc lower 
than four and were kept in the final subset to carry out 
model averaging (Table  1). All predictors remained 
in the average model but their effects and importance 
varied greatly (Fig. 2, SI Table S1). SSI, pond density 
and their interaction were present in all ten models. 
They all exhibited positive estimates and highly 
significant p-values (p < 0.001). Higher pond density 
and SSI increased the speed at which cells were 
colonized. The positive estimates for the interaction 
between pond density and SSI reflect the acceleration 
of colonization speed with higher values of these two 
predictors.

River resistance cost was present in nine models. 
Logically higher resistance cost would reduce 
colonization speed. However, only the highest 
resistance level differed from the others (Fig.  2, SI 
Table S1). Unlike SSI, we detected no interaction with 
pond density. Furthermore, the size of main effects 
was about an order of magnitude lower than for river 
cost than for SSI. The four landscape predictors were 
present in fewer models (1–7) as main effects or in 
interaction with SSI for contagion. The effect sizes 
were one to two orders of magnitude lower than SSI’s 
and the estimates did not significantly differ from 
zero (0.216 < p < 0.951), highlighting their limited 

contribution to the variation of the expansion proxy 
(Figs. 2 and 3, SI Table S1).

Another way to highlight the different responses 
to landscape configuration and habitat density is 
to analyze the relationships between each of these 
environmental predictors and the maximum of steps 
ran by the simulation. Here, we considered the 25 
initial windows and the response at intermediate 
SSI (1.5). Figure  4 illustrates these relationships. 
The two windows for which the simulation stopped 
as soon as step 2 are clearly two outliers that cannot 
be explained by our predictors. Nevertheless, results 
show a negative relationship with pond density (linear 
regression; 25 windows: F1,23 = 2.802, p = 0.108; 
two outliers excluded: F1,21 = 25.56, p < 0.001) but 
not with the four landscape configuration predictors 
(linear regression; 25 windows: all, p > 0.113; 
two outliers excluded: all p > 0.320). Results for 
all settings of spatial sorting are presented as 
supplementary information (SI Figure S5).

Discussion

According to our predictions, we expected SSI and 
landscape structure to jointly influence the dynamics 
of colonization. After effectively simulating the 
colonization of landscape windows by X. laevis 

Table 1   Model selection 
table for models estimating 
the relationships between 
an expansion proxy (slope 
of the colonized area over 
time step), and predictors 
of spatial sorting intensity 
(SSI), river resistance cost 
(riv.cost), pond (p.density) 
and landscape configuration 
(contagion = contag, 
cohesion = cohes, edge 
density = edge, area 
cv = area. All models with 
ΔAIC < 4 to the best model 
have been included in the 
model subset

Model (AICCnull model = 296.55) k logLik AICc AICc Weight

SSI + riv.cost + density + contag
 + contag:SSI + density:SSI

13 90.02 − 152.0 0.000 0.306

SSI + riv.cost + density + density:SSI 10 85.66 − 150.1 1.866 0.121
SSI + riv.cost + density + contag + edge
 + conta:SSI + density:SSI

14 90.22 − 150.0 1.941 0.116

SSI + riv.cost + density + area + conta
 + conta:SSI + density:SSI

14 90.20 − 150.0 1.974 0.114

SSI + riv.cost + density + cohes + contag
 + conta:SSI + density:SSI

14 90.04 − 149.7 2.294 0.097

SSI + riv.cost + density + edge
 + density:SSI

11 86.05 − 148.6 3.349 0.057

SSI + riv.cost + density + contag
 + density:SSI

11 86.05 − 148.6 3.356 0.057

SSI + riv.cost + density + area
 + density:SSI

11 85.82 − 148.2 3.806 0.046

SSI + density + contag + contag:SSI
 + density:SSI

11 85.75 − 148.0 3.948 0.043

SSI + riv.cost + density + area + contag
 + edge + contag:SSI + density:SSI

15 90.39 − 148.0 3.957 0.042
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in both areas, we observed a major effect of spatial 
sorting on population expansion, underlined by 
the fact that this predictor was included in all best 
models. Increasing values of spatial sorting led to 
faster colonization, as shown by change in model 
estimates between levels for the colonization proxy 
(colonized area). More surprisingly, we detected no 
effect of landscape configuration on the colonization 

process. None of the four descriptors came close to 
the explanatory value of SSI. Such a result may be 
due to the genuine low importance of landscape 
configuration in the colonization process, which may 
occur if the scale of movements is large enough so 
that colonization of novel habitats is not impaired 
by the landscape grain. An alternative explanation 
is that the space of landscape parameters was too 

Fig. 2   Effects of spatial sorting intensity, pond density, river 
resistance cost and four landscape descriptors (cohesion, 
contagion, edge density, area cv) on colonization speed, 

expressed as the slope of the regression of the colonized 
against time step. Coefficient have been estimated using model 
averaging
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narrow. However, this possibility seems improbable. 
First, we ran simulations across two study zones 
(Western France and Bordeaux) where landscapes 
have different historical trajectories and current 
socio-economic drivers. Second, dominant land 
use and practices vary locally across each zones, as 
areas homogenously covered by the same feature 
(crop, forest, vineyard) are juxtaposed to areas where 
features alternate over smaller spatial scale (a bocage 
landscape where mostly pastures are separated by 

hedgerows). Supporting this view, we found that the 
number of steps to reach the window border was also 
very variable.

In contrast to landscape configuration, pond 
density interacted with SSI for the expansion proxy. 
Slopes modelling the relationship between pond 
density and the colonized increased with SSI, 
which corresponds to an accelerating effect of the 
colonization process due to this interaction. This 
result might have a straightforward mathematical 

Fig. 3   Effect of spatial sorting intensity and pond density 
(A), cohesion (B), contagion (C), edge density (D), coefficient 
of variation of patch area (E) on the area colonized per time 
step. Three levels of spatial sorting have been selected that 
represent an increase in 2.5% (2.5), 5% (5.0), or no change 

(1.0) in dispersal capacity per time step. Results are shown for 
the medium river resistance cost (1.5). Note that only for pond 
density is the relationship statistically supported. The lines 
represent model outputs for visual comparison, regardless of 
their statistical significance
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explanation. Considering a binary landscape with a 
homogeneous density of habitat, the area that can be 
reached from a starting point, and thus the number 
of habitat patches, increases with the square of 
dispersal distance. Given this relationship, we would 
expect a similar pattern in a more realistic landscape, 
even if colonization paths are not straight lines. 
Therefore, habitat density appears, in our situation, 
a much stronger predictor of range expansion than 
descriptors of landscape configuration but its effect 
cannot be estimated without considering the influence 

of spatial sorting. To be clear, this result implies 
that the expected relationship between pond density 
and expansion proxy in a newly colonized area will 
depend on the number of dispersing steps away 
from the introduction site. The older the invasive 
population the stronger the effect of pond density on 
expansion rate will be at the range periphery.

We addressed the uncertainty about the cost 
resistance of rivers by conducting simulations at 
three levels of resistance. The effect was mild and 
only the higher cost level differed from the other. 

Fig. 4   Relationships 
between the maximum 
number of steps ran by 
simulations for habitat 
density, expressed as pond 
density (A) and the four 
predictors of landscape 
configuration, namely 
cohesion (B), contagion 
(C), edge density (D), 
coefficient of variation of 
patch area (E). Results are 
shown for all 25 windows 
for which simulations 
were carried out and at the 
largest intensity of spatial 
sorting (5.0) and medium 
river resistance cost (1.5). 
The 21 windows kept in 
the analysis are in red. 
The four windows in blue 
were discarded because 
colonization stopped before 
step 9 at any of the three 
spatial sorting setting (see 
text). The graphs for the 
two other spatial sorting 
setting are provided as 
supplementary information 
(SI Figure S5)
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Such a result has an important implication as it shows 
that selecting lower resistance values would not 
further enhance the colonization process. Similarly, 
considering resistance values beyond the highest 
one selected in this study would be unrealistic as 
swimming underwater is unlikely to be costlier than 
moving over a grass substrate on land for this aquatic 
species. We can therefore be reliably confident that 
the conclusions about the effect of SSI cannot be 
invalidated by selecting more extreme resistance 
cost values for rivers, at least within a realistic range. 
We may remain cautious about one particular point 
though. We do not know how much how frogs prefer 
to stay in a river course once they reached it rather 
than to leave it and cross the terrestrial environment 
to find a pond. Although we experimentally 
quantified the relative preference for the different 
substrates, we did not measure it for water. For 
obvious reasons, one is unlikely to recreate conditions 
encountered in rivers, which includes for instance 
olfactory cues from predators. Therefore, individuals 
may have a tendency to stay in water and follow 
watercourses but it is not known. Selecting lower 
resistance cost values for rivers partially solve this 
issue but we should stay aware that this component 
of resistance cost is currently lacking. Similarly, 
perceived resistance during daily movements may 
somewhat differ from perceived resistance during 
dispersal events which may affect the robustness of 
connectivity models (Diniz et  al. 2020). However, 
we do not expect a strong bias in our study. First, 
amphibians move on the ground with a limited 
perception of their surrounding environments unlike 
larger flying organisms. The risks (high energetic 
expenses, dehydration, predation) faced by X. laevis 
are essentially the same when leaving a pond for a 
short trip or when dispersing, even if individuals 
could be more risk-taking in the latter case. Second, 
UNICOR is a resistant kernel modelling approach 
that integrates a dispersal function.

Even if we did not find evidence of an influence of 
landscape configuration, the colonization dynamics 
differed noticeably between all windows. On the 
one hand, expansion did not occur in four windows 
at least for some of the setting values. We had to 
discard these cases from analysis as the slope of the 
regression of expansion proxies over time steps could 
not be estimated. We assume that different responses 
were caused by particular landscape configurations 

in these windows that did not allow colonization 
unless geographical barriers were overcome when 
dispersal was high enough. According to Fig.  2, 
these responses were not due to particularly low pond 
density in the window. The neighboring environment 
around the starting pond may not allow expansion, for 
instance if all pixels have high resistance costs and 
pond density is locally lower. However, if particular 
landscapes may halt the colonization process in some 
windows, they do not seem to be common enough 
to affect the analysis outcome for the whole window 
sample.

On the other hand, despite using large windows, 
colonization occurred so rapidly in some windows 
that window borders were reached as early as step 
nine, which forced us to discard information from 
further steps in order to keep a sufficiently large 
sample size of windows. We thus restricted our 
analysis to the first nine simulation steps to allow 
the computation of the regression of expansion 
proxies against time steps. Examination of the whole 
dataset shows that the square-root transformation 
of the expansion proxies properly linearized the 
relationships so that we obtained reliable estimates 
of the expansion rate (slope) even when considering 
only the early steps of the colonization process. Using 
even larger windows may alleviate this problem, 
potentially resulting in a lower number of discarded 
windows, albeit at the expense of computation time.

Habitat density (pond density), which can be 
viewed as a dimension of landscape, appeared to be 
a major factor generating variation in colonization 
success between windows, unlike landscape 
configuration proxies. The effect of landscape 
configuration may be stronger in other geographical 
contexts with different history of landscape formation 
and current socio-economic uses. For instance, one 
would expect expansion to be slowed or halted in 
areas dominated by open field crop areas where 
very little habitat is available. Exploring a wider 
range of conditions may help to further explore this 
issue. Broadening the environmental conditions 
encountered in windows would require to either 
consider other colonized regions of the world or to 
generate artificial landscapes in silico (With 1997), 
with the risk of simulating unrealistic conditions (Tao 
et al. 2024). In either case, computation time may be 
a limit. For the sake of comparison, computing one 
set of 75 simulations per river resistance cost (25 
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windows, 3 spatial sorting values) took 127  days 
with a cluster computer parallelizing the dispersal 
simulations per window (Intel Xenon CPU E5-2650 
v2, 2.6 GHz, two cores, 256 GB Ram). Computation 
time depends on the total number of ponds in a 
window, as for each newly colonized pond a single 
kernel across the landscape of the window needs to 
be computed by UNICOR.

Our simulations reveal the contrasting influence 
of two components of the landscape. The density 
of suitable habitat appears to be the major driver of 
the colonization rate, while the way other landscape 
features are spatially arranged in the window was not 
relevant to the process. Some authors obtained similar 
results for habitat density (Barros et al. 2016), while 
others reached opposite conclusions (Bocedi et  al. 
2014). Both studies used the software Rangeshifter 
(individual-based model) and considered the 
proportion of available habitat in artificial binary 
landscapes. This might be a relevant difference in 
comparison with our approach, which relies on ponds 
as small and discrete habitats which total area cannot 
vary much between windows. Thus, it makes sense 
that pond density, i.e. the average distance between 
ponds, rather than the amount of habitat per se 
matters.

We acknowledge that we did not consider other 
factors that may affect the expansion process. For 
instance, studies showed that dispersal distance 
is enhanced (North et  al. 2011; Williams et  al. 
2016a) or dispersal capacity reduced (Schtickzelle 
et  al. 2006; Cheptou et  al. 2008) with higher 
levels of habitat fragmentation. Likewise, density-
dependence effects on dispersal can also influence 
the expansion process (Pachepsky and Levine 
2011; Dahirel et  al. 2023). Our modelling approach 
did not allow to implement such eco-evolutionary 
feedback or density-dependence effects. Instead, 
we selected a non-demographic method to avoid 
making unsupported assumptions on demographic 
response in our species. This has allowed us to 
focus on the interaction between landscape features 
and spatial sorting, while ensuring computation 
remained tractable. Nonetheless, our study shows 
that the influence of landscape cannot be considered 
independently of spatial sorting. Depending on 
the stage of the colonization process, the dispersal 
capacity of the colonizing individuals changes 
because of spatial sorting and this may determine 

whether a particular landscape configuration can 
be colonized or not. In practical terms, some areas 
may provide efficient buffers to prevent further 
colonization but their characteristics will necessarily 
change with the distance to the introduction site and 
the number of generations since expansion started as 
dispersal capacity changes over time and space. This 
outcome has actual consequences for the control of 
alien invasive populations, whenever practitioners 
need to anticipate the time before a protected area is 
reached by an alien invasive population or the speed 
at which an area will be entirely colonized. The 
implementation of control measures takes time to 
engage stakeholders, obtain funding and organize the 
logistics. Any insight about the time available before 
an area of particular ecological interest is reached is 
likely to improve the efficiency of the measures to be 
deployed. To do so, the effect of spatial sorting on 
dispersal traits need to be estimated more frequently 
in control programs not to run the risk of making 
inappropriate assessments or designing irrelevant 
solutions.
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